ORC 69-27

B AVERAGE COST SEMI-MARKOV =
"R DECISION PROCESSES | @
by

SHELDON M. ROSS

I

RESEARCH ~
CENTER i ¥

d”&'liqbb" S
0w g i g ey
COLLEGE OF ENGlNEERm%/

UNIVERSITY OF CALIFORNIA - BERKELEY

OPERATIONS

SEPTEMBER 1969

.....



AVERAGE COST SEMI-MARKOV DECISION PROCESSES
by

Sheldon M. Ross
Department of Industrial Engineering
and Operations Research
University of California, Berkeley

SEPTEMBER 1969 ORC 69-27
This rescarch has been supported by the U. S. Army Research Office-
Durham under Contract DA-31-124-AR0-D-331 with the University of
California. Reproduction in whole or in part is permitted for any
purpose of the United States Government.



ABSTRACT

The Semi-Markov Decision model is considered under
the criterion of long-run average cost. A new
criterion, which for any policy considers the limit
of the expected cost incurred during the first n
transitions divided by the expected length of the
first n transitions, is considered. Conditions
guaranteeing that an optimal stationary (non-
randomized) policy exist are then presented. It

is also shown that the above criterion is equivalent
to the usual one under certain conditions.
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AVERAGE COST SEMI-MARKOV DECISION PROCESSES

by

Sheldon M. Ross

1, INTRODUCTION

A process 1is observed at time O and classified into some state x ¢ ¥ .
After classification, an action a € A must be chosen. Both the state space
x and the action space A are assumed to be Borel subsets of complete, separable

metric spaces.

If the state is x and action a 1is chosen, then

(1) the next state of the process is chosen according to a known regular
conditional probability measure P(: | x,a) on the Borel sets of x ,
and

(i1) conditional on the event that the next state is y , the time until
the transition from x to y occurs is a random variable with known
distribution F(* | X,a,y) . After the transition occurs, an action is
again chosen and (1) and (ii) are repeated. This is assumed to go on

indefinitely.

We further suppose that a cost structure is imposed on the model in the
following manner: If action a 1is chousen when in state x and the process
makes a transition t wunits later, then the cost incurred by time s(s < t)

after the action was taken is given by a known real-valued Baire function

C(s | X,a) .+

+If one allows the cost to also depend upon the next state visited, then
C(s | x,a) should be interpreted as an cxpected cost,



In order to ensure that transitions do not take place too quickly, wc shall

need to assume the following:

Condition 1:

There exists & > 0, ¢ > 0 , such that

J. F(4 | X,a,y)dP(y | x,a) <1 - ¢ for all x , a .
YEX

In other words, Condition 1 asserts that for every state x and action a there
is a positive probability of at least ¢ that the transition time will be greater
than 6 .

A policy n 1is any measurable rule for choosing actions. The problem is to
choose a policy which minimizes the expected average cost per time. When the time
between transitions is identically 1 , then the process 1is called a Markov
decision process and has been extensively studied (see, for instance, [2], [5] and
[6]). When this restriction is lifted, we have a semi-Markov decision process and
results have only previously been given for the case where A and S are finite

(see [3] and [4]).



2.  EQUALITY OF CRITERIA

Let Xn and a be respectively the nth state of the process and the nth
action chosen, n =1,2, ... Also, let L be the time between the (n - 1)st

and the nth transition, n > 1 .
Furthermore, let Z(t) denote the total cost incurred by t , and let Zn

be the cost incurred during the nth transition interval;* and define for any

policy

10T 20,
0200y = Tim £ |2 | x - |
t->o

and

2 e i=1
¢“(x) = ii: [ n
ETr z Yy | Xl = X

[ n
E |1 zilxl-x]

Thus ¢1 and ¢2 both represent, in some sense, the average expected cost.
Though ¢1 is clearly more appealing, it will be criterion ¢2 that we shall

deal with. Fortunately, it turns out that under certain conditions both criterions

are identical.

Definition:

A policy 1is said to be stationary if the action it chooses only depends on

the present state of the system.

The reader should note at this point that if a stationary policy is employed
then the process {X(t),t > 0} is a semi-Markov process, where X(t) represents

the state of the process at time t .

1.Of course, Z(t) and Zn are determined by Xi » 350 Ty, 1>1.




For any initial state x , let

T e dnf {t >0 : X(t) = x , X(t ) ¢ x} ,

+

Nemin {n>0:X = x} .
nt+

1

Hence, T 1is the time of the first return to state x and N 1is the number of

transitions that it takes.

Lemma 1:

If Condition 1 holds, and if E_[T | X, = x] <=, then E [N | X, ==} < o

N
and T = Z T
n
n=l
Proof:
N

L By the definition of T and N it follows that T > ] T, with equality
! n=1

holding if N <= , Now, if we let

0 if r <6
n -

€

§ with probability if t_>4¢,
n
J-r6 |y, | x,a2)
T = y X = x ,a =a
n n n
0 with probability 1 - £ if 1>,
f(l - F(6 | x,y,a))dP(y | x,a) n
y X =x ,a =a
n n

then it follows from Condition 1l that ;n , n =12 .,. are independent and

! identically distributed with

*If the set in brackets is empty then take N to be = , and similarly for T .



P{t_ =6} =¢=1-P{7 =0}.
n n

N
Now, from Wald's equation it follows that if EN = » then E 2 ¥n = » . and hence
1
N N _ _
that ET > E § T > E % T, (since U j_rn) .

Q.E.D.

Theorem 1:
Assume Conditionl1l. If =m 1s a stationary poliryv, and if E"[T | Xl = x] <>,
!

then

E [2(T) | X, = x)
E [T | X, = x]

o1 () = 6200 =

Proof:

Suppose throughout the proof that X1 = x . Now, under a stationary policy
{X(t),t > 0} 1is a regenerative process with regeneration (or cycle) point T .

Hence, by a well known result

¢i(i) = Eﬂ[cost incurred during a cycle]/En[length of cycle]
= E"[ZT]/E"T 5

Also, it is easy to see that {Xn , n =12 ...} 1is a discrete time regenerative

process with regeneration time N . Hence, by regarding Zl + ...+ ZN as the

"cost" incurred during the first cycle of this process, it follows by the same
well known result that
N

m
(1) ETr z Zn/m - E" Z Zn/E"N as m -+ ®
n=1 n=1



where we have used Lemma 1 to assert that E"N < « , However, we may also regard
L5 L Ty as the "cost" incurred during the first cycle and hence, by the

same reasoning,

m N
(2) En z tn/m > E" z Tn/ E"N as m-~> ® .
n=1 n=1

By combining (1) and (2) we obtain

N

However, since N < «» (Lemma 1) it is easy to see that z Zn = Z(T) and
n=1

N

Z L) T , and the result follows.
n=1
Q.E.D.

Remarks:

It also follows from the above proof that, with probability 1,

) oz

E_[2(T)]
z(¢t) _ ., o=l % _“n
lm 235 = 1im = T

Lt m z

Ta
n=1

Also, suppose that the initial state is y , y # x . When is it true that
¢i(y) = ¢:(y) = ¢i(x) ? One answer is that if, with probability 1, the process
will eventually enter state x , then {X(t),t > 0} is a delayed (or general)
regenerative process, and the proof goes through in an identical manner.

Let




T(x,a) = I j tdfF(t | x,a,y)dP(y | x,a)
yex O

and

C(x,a) = j. .I c(t | x,a)dF(t | x,a,y)dP(y | x,a) .
yex O

We shall suppose that both C(x,a) and ?(x,a) exist and are finite for all
X , a.

We also note that the expected cost incurred during a transition interval and
the expected length of a transition interval only depend on the parameters of the
process through T(x,a) , C(x,a) and P(- | x,a) ; and, as a result, ¢2 only
depends on the parameters of the process through these three functions. Thus, we
may choose the cost and transition time distributions in as convenient a manner as

possible; and hence for the remainder of this paper, let us suppose that

1 t > 1(x,a)
F(t | x,a,y) =

0 t< 1(x,a)

and

0 E < ?{x,a}
c(t | x,a) =

C(x,a) £ > oli8) .

That is, we suppose that the time until transition is (with probability 1)

;(x,a) and that a cost of C(x,a) 1is incurred at the time of transition,



3. AVERAGE COST RESULTS

Theorem 2:

Assuming Condition 1, if there exists a bounded Baire function f(x) , x € ¥ ,

and a constant g , such that

(3) £(x) = min {C(x,a) + J. f(y)dP(y | x,a) - gi(x,a) X € ¥ ,
a
*

*
then, for any policy w which, when in state x , selects an action minimizing

the right side of (3), we have

¢2*(x) = g = min ¢§(x) for all x € % .
n n

Proof:

Let Si -(Xl,al, SEBE Xi,ai) , 1 =1,2, ... For any policy

n
E"LZZ [£(x) - E (£X) | s, _)]f =0.

But,

E[£(X) |5, ;] I £(y)dP(y | X, _j»3; )

®

C(Xi_loai_l) + J‘ f(}’)dp(y I xi'l’ai-l) - gr(xi_liai_l)
#

- CXy_ppa59) * 87Xy _gha )

min (C(X,  ,a) + f £(y)dP(y | X;_;.a) - 8T(X;_;,a)
3 X
- C(X

-1031-1) * 8T _peay )

£(X - C(xi-l’ai-l) + gr(xi_l,ai_l) .

1-1)




* *
with equality for m , since wn takes the minimizing actions. Hence,

n
0<E 122 [£X,) - £, ) + T&,_; .8, ;) - 87X, 5,8, ;)]

or

n
E ] C(Xi_l,ai_l) Eﬂ[f(xn) - f(xl)]

L}
g < 1:2 + - ,
E. ] TX, .,a, ) E_ ] T(X, . ,a_,)
T =2 i-1’7i-1 T a2 i-1’'"1-1

*
with equality for m . By letting n > » and using the boundedness of £ and

n
the fact that Condition 1 implies that E_] T(X, )>ned§+=, we obtain
1

-1'84-1

n
B, L C®p e )

L4
g < Tim —1=2 - o2
o n - m
By L TRy gy )
1=2

*
with equality for m and for all possible values of Xl .

Remarks:

The above proof is an adaptation of one given in [ 6] for Markov decision
processes. We have tacitly assumed that a rule minimizing the right side of (3)
may be chosen in a measurable manner. Clearly a sufficient (but by no means

necessary) condition is that the action space A be countable.

In order to determine sufficient conditions for the existence of a bounded
function £(x) and a constant g satisfying (3), we introduce a discount factor

a, 0 <a <=, and continuously discount costs. That is, we suppose that
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. -at
a cost of C incurred at time t is equivalent to a cost Ce incurred at

time O .

Let V" a(x) denote the total expected discounted cost when = 1is employed,
1]

and the initial state is x ; and let Va(x) inf VTT a(x) . Then, it may be

m
shown by standard arguments (see [1]) that
(4) Va(x) = min e-aT(x,a) C(x,a) + J. Va(y)dP(y I X,a) s
a
0

Now, fix some state--call it O0--and define

fa(x) = Va(x) - Va(O) 1

From (4), we obtain

(5) V_(0) + £ (x) = min OB 5y ) 4 j £, (14P(y | x,a) + V_(0)
a
0

We shall need the following condition:

Condition 2:

There exists an M < « , such that

C(x,a) i_M?(x,a) for all x , a .
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Theorem 3:

Under Conditions 1 and 2, if the action space A 1is finite, and if
{fa(x) , 0 <a <c} 1is a uniformly bounded equicontinuous family of functions for

some 0 < ¢ < =, then

(1) there exists a bounded continuous function f(x) and a constant g
satisfying (3);

(1i) for some sequence @ > 0, f(x) = lim fa (x) ;
o+ n

(111) 1lim aVa(x) =g for all x € ¥ .

a0

Proof:

From (5), we obtain that

£ (x) = min e 0T 8 5y 2y 4 j £_(ndr(y | x,a)
a
0

(6)

- Va(O)(a¥(x,a) + o(a)),} .

Now, by the Arzela-Ascoli theorem there exists a sequence @ > 0 and a

continuous function £ such that 1lim fa (x) = £f(x) for all x . Also, it
n+® n

follows from Conditions 1 and 2 that aVG(O) is bounded, and hence we can require

that 1lim anVa (0) = g exists. The results (i) and (ii) then follow by letting
n

n->xe
a 0 in (6) and using Lebesgue's dominated convergence theorem.

The proof of (iii) is identical wi:h the one given in [6].
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4. AN EXAMPLE

Suppose that batches of letters arrive at a post office at a Poisson rate X\ .
Suppose further that each batch consists of j letters with probability PJ y
J > 1, independently of each other. At any time, a truck may be dispatched to
deliver the letters. Assume that the cost of dispatching the truck is K , and
also that the cost rate when there are j letters present 1s CJ » an Increasing,
positive, bounded sequence, j > 1 . The problem is to choose a policy minimizing
the long-run average cost,

The above may be regarded as two action semi-Markov decision process with
states 1,2,3, ... ; where state 1 means that there are 1 letters presently
in the post office. Action 1 is "dispatch a truck” and action 2 1is "don't
dispatch a truck." (Note that since a truck would never be dispatched if there
were no letters in the post office, we need not have a state 0 .)

The parameters of the process are:

P(3/4,1) = P » P(1 + §/1,2) = P

3 3

T(i,1) = 1/x , 1(1,2) = 1/x

€(1,1) = K + 9§9>- , C(1,2) = 9%—)-

Now, if we let

eulxva(i,l) = min {K + g&?z R Q%%L}

and for n»> 1
ealxva(i,n) = min {K + %91 + 321 Pjva(.‘l.n -1) ; c_&g + le PJVa(i + j,n - 1)} ’

then it follows by induction that Vu(i,n) is increasing in { for each n .

Also, since costs are bounded and the discount factor e-a/k <1, it follows that
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Va(i) = lim Va(i,n) , and hence Va(i) is increasing. Also, Va(i) satisfics
n

¢)) ea/xvcii) = min {x + C_(A_O_L + le Pjva(j) ; 9%)- + 321 PjVa(i + j)} :

We will now show that Va(i) - Va(l) is uniformly bounded and hence Theorem 3 is

applicable. To do this, we consider two cases:

Cage {:
v ) =k + 2 4 T py () .
] A ja
i=1
In this case, we have by (7) that Va(i) f_Va(l) and hence, by monotonicity,

Va(i) = Va(l) for all i .

Case 11i:

a/) _C@ ¥
e TV (1) = [+ _121 Pjva(l +3) .

In this case, we have by (7) that
a/A a/\ c(0) T
e’ (1) <V (1) sK+ I+ ] ANED

j=1

c) , v
SR+ 2=+ 321 PJVa(j +1)

SN choz } ch12 - e“/*vu(l)

Thus, in either case Va(i) - Va(l) is uniformly bounded and hence by Theorem 3

there exists an increasing function f(i) and a constant g such that
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£00) = nin {K TR I St P §} ,

and the policy which chooses the minimizing actions is optimal.

Now, 1f we let

1% - pin 1 S ) Ph(j+i)>K+-C—(-Ql+ Y P,h(3)} ,

then it follows from the monotonicity of C(i) and h(i) that the optimal policy
is to dispatch a truck whenever the number of letters in the post office is at

*
least 1 ; and hence, the structure of the optimal policy is determined.
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